考試內容和考試要求
(一)函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形
數列極限與函數極限的概念 無窮小和無窮大的概念及其關系 無窮小的性質及無窮小的比較 極限的四則運算 極限存在的單調有界準則和夾逼準則 兩個重要極限:
函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質 函數的一致連續性概念
考試要求
1. 理解函數的概念,掌握函數的表示法,并會建立簡單應用問題中的函數關系式。
2. 理解函數的有界性、單調性、周期性和奇偶性。掌握判斷函數這些性質的方法。
3. 理解復合函數的概念,了解反函數及隱函數的概念。會求給定函數的復合函數和反函數。
4. 掌握基本初等函數的性質及其圖形。
5. 理解極限的概念,理解函數左極限與右極限的概念,以及函數極限存在與左、右極限之間的關系。
6. 掌握極限的性質及四則運算法則,會運用它們進行一些基本的判斷和計算。
7. 掌握極限存在的兩個準則,并會利用它們求極限。掌握利用兩個重要極限求極限的方法。
8. 理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。
9. 理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
10. 掌握連續函數的運算性質和初等函數的連續性,熟悉閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理等),并會應用這些性質。
11. 理解函數一致連續性的概念。
(二)一元函數微分學
考試內容
導數的概念 導數的幾何意義和物理意義 函數的可導性與連續性之間的關系 平面曲線的切線和法線 基本初等函數的導數 導數的四則運算 復合函數、反函數、隱函數的導數的求法 參數方程所確定的函數的求導方法 高階導數的概念 高階導數的求法 微分的概念和微分的幾何意義 函數可微與可導的關系 微分的運算法則及函數微分的求法一階微分形式的不變性 微分在近似計算中的應用 微分中值定理 洛必達(L’Hospital) 法則 泰勒(Taylor)公式 函數的極值 函數最大值和最小值 函數單調性 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 弧微分及曲率的計算
考試要求
1. 理解導數和微分的概念,理解導數與微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,掌握函數的可導性與連續性之間的關系。
2. 掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的求導公式。了解微分的四則運算法則和一階微分形式的不變性,會求函數的微分。
3. 了解高階導數的概念,會求簡單函數的 n 階導數。
4. 會求分段函數的一階、二階導數。
5. 會求隱函數和由參數方程所確定的函數的一階、二階導數
6. 會求反函數的導數。
7. 理解并會用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒定理。
8. 理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其簡單應用。
9. 會用導數判斷函數圖形的凹凸性,會求函數圖形的拐點以及水平、鉛直和斜漸近線, 會描繪函數的圖形。
10. 掌握用洛必達法則求未定式極限的方法。
11. 了解曲率和曲率半徑的概念,會計算曲率和曲率半徑。
由于篇幅太長,剩余部分不便展示,下載附件觀看全文。
您填的信息已提交,老師會在24小時之內與您聯系
如果還有其他疑問請撥打以下電話